Final Exam

Instructor: Gerardo Ferrara

Exercise 1. (5 points) Find the maxima and minima of the following function, subject to the corresponding constraint:

$$
f\left(x_{1}, x_{2}\right)=\left(x_{1}-1\right)^{2}+\left(x_{2}+1\right)^{2} \quad \text { subject to } \quad x_{1}^{2}+x_{2}^{2}=2
$$

Exercise 2. (5 points) Solve the following differential equation with separable variables:

$$
x^{\prime}(t)=(t+1)\left[x^{2}(t)+x(t)\right]
$$

Exercise 3. (5 points) Solve the following linear first-order differential equation:

$$
x^{\prime}(t)=e^{t} x(t)+e^{2 t}
$$

Exercise 4. (5 points) Solve the following Cauchy problem:

$$
\left\{\begin{array}{l}
x^{\prime}(t)=3 t e^{t^{2}} x(t) \\
x(0)=1
\end{array}\right.
$$

Exercise 5. (5 points) Solve the following linear first-order differential system with constant coefficients:

$$
\left\{\begin{array}{l}
x_{1}^{\prime}(t)=x_{3}(t) \\
x_{2}^{\prime}(t)=3 x_{1}(t)+7 x_{2}(t)-9 x_{3}(t) \\
x_{3}^{\prime}(t)=2 x_{2}-x_{3}(t)
\end{array}\right.
$$

Exercise 6. (5 points) Solve the following linear second order differential equation with constant coefficients transforming it into a first-order linear system (check your solution with the characteristic function):

$$
x^{\prime \prime}(t)-5 x^{\prime}(t)+6 x(t)=7
$$

